If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+20x-23=0
a = 5; b = 20; c = -23;
Δ = b2-4ac
Δ = 202-4·5·(-23)
Δ = 860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{860}=\sqrt{4*215}=\sqrt{4}*\sqrt{215}=2\sqrt{215}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{215}}{2*5}=\frac{-20-2\sqrt{215}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{215}}{2*5}=\frac{-20+2\sqrt{215}}{10} $
| t+48=72 | | 9x+15*6x+15=135 | | 20=2(t-7) | | x×3+43=181 | | 8+a+9=35a= | | x×3+43=x | | 3x+4=-5x-36 | | 138=-3x+165 | | X=82-2x | | 3x+15=12x−30 | | 5(5^3x-1)=32 | | S(5)=400x+10,000 | | 545=12x125 | | 2.4x–3=1.5x+21 | | 7s-2s=95-30 | | -11+5k=-92 | | 63=7x+6x-2 | | 12k=144+24 | | -2+10=-x | | Tn=6n+3 | | 5x(x-5)=x^2-21 | | 11.5+x/2=18.5 | | 39=d(-23) | | -4(5)+7x=8 | | x4+12=40 | | 4^(x)=86 | | 9-y/3=15 | | –7=p−10 | | 8(x-2)–4=2(x+2) | | 3x^2+2=-x | | 3x-13+2x+4=64 | | Y=-6x-24+72 |